Title of dissertation : THEORY OF GRAPHENE TRANSPORT PROPERTIES
نویسندگان
چکیده
Title of dissertation: THEORY OF GRAPHENE TRANSPORT PROPERTIES Qiuzi Li, Doctor of Philosophy, 2013 Dissertation directed by: Professor Sankar Das Sarma Department of Physics Graphene is of great fundamental interest and has potential applications in disruptive novel technologies. In order to study the novel phenomena in graphene, it is essential to understand its electron transport properties and in particular the main factors limiting its transport mobility. In this dissertation, we study the transport properties of graphene in the presence of electron-hole puddles induced by charged impurities which are invariably present in the graphene environment. We calculate the graphene conductivity by taking into account the non-mean-field two-component nature of transport in the highly inhomogeneous density and potential landscape, where activated transport across the potential fluctuations in the puddle regimes coexists with regular metallic diffusive transport. Our theoretical calculation explains the non-monotonic feature of the temperature dependent transport, which is experimentally generically observed in low mobility graphene samples. Our theory also predicts the existence of an intriguing “disorder by order” phenomenon in graphene transport where higher-quality (and thus more ordered) samples, while having higher mobility at high carrier density, will manifest more strongly insulating (and thus effectively more disordered) behavior as the carrier density is lowered compared with lower quality samples (with higher disorder), which exhibit an approximate resistivity saturation phenomenon at low carrier density near the Dirac point. This predicted behavior, simulating a metal-insulator transition, arises from the suppression of Coulomb disorder induced inhomogeneous puddles near the charge neutrality point in high quality graphene samples. We then study carrier transport through graphene on SrTiO3 substrates by considering the relative contributions of Coulomb and resonant impurity scattering to graphene resistivity. We establish that the nonuniversal high-density behavior of σ(n) in different graphene samples on various substrates arises from the competition among different scattering mechanisms, and it is entirely possible for graphene transport to be dominated by qualitatively different scattering mechanisms at high and low carrier densities. Finally, we calculate the graphene conductivity as a function of carrier density, taking into account possible correlations in the spatial distribution of the Coulomb impurity disorder in the environment. We find that the conductivity could increase with increasing impurity density if there is sufficient inter-impurity correlation present in the system. THEORY OF GRAPHENE TRANSPORT PROPERTIES
منابع مشابه
Theoretical computation of the quantum transport of zigzag mono-layer Graphenes with various z-direction widths
The quantum transport computations have been carried on four different width of zigzag graphene using a nonequilibrium Green’s function method combined with density functional theory. The computed properties are included transmittance spectrum, electrical current and quantum conductance at the 0.3V as bias voltage. The considered systems were composed from one-layer graphene sheets differing w...
متن کاملTheoretical computation of the quantum transport of zigzag mono-layer Graphenes with various z-direction widths
The quantum transport computations have been carried on four different width of zigzag graphene using a nonequilibrium Green’s function method combined with density functional theory. The computed properties are included transmittance spectrum, electrical current and quantum conductance at the 0.3V as bias voltage. The considered systems were composed from one-layer graphene sheets differing w...
متن کاملSpin-polarized transport through a zigzag-edge graphene flake embedded between two armchair nanoribbons electrodes
We study the coherent spin-polarized transport through a zigzag-edge graphene flake (ZGF), using Hubbard model in the nearest neighbor approximation within the framework of the Green function’s technique and Landauer formalism. The system considered consists of electrode/ (ZGF)/electrode, in which the electrodes are chosen to be armchair nanoribbons. The study was performed for two types of ele...
متن کاملAn Analytical Approach of Nonlinear Thermo-mechanical Buckling of Functionally Graded Graphene-reinforced Composite Laminated Cylindrical Shells under Compressive Axial Load Surrounded by Elastic Foundation
This paper deals with an analytical approach to predict the nonlinear buckling behavior of functionally graded graphene-reinforced composite laminated cylindrical shells under axial compressive load surrounded by Pasternak’s elastic foundation in a thermal environment. Piece-wise functionally graded graphene-reinforced, composite layers are sorted with different types of graphene distribution. ...
متن کاملElectronic properties of hydrogenated porous Graphene based nanoribbons: A density functional theory study
The structural and electronic properties of the hydrogenated porous graphene nanoribbons were studied by using density functional theory calculations. The results show that the hydrogenated porous graphene nanoribbons are energetically stable. The effects of ribbon type and ribbon width on the electronic properties of these nanoribbons were investigated. It was found that both armchair and zigz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013